Mark Scheme (Results)

January 2020

Pearson Edexcel International GCSE in
Chemistry (4CH1)
Paper 2C

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

January 2020
Publications Code 4CH1_2C_msc_20200305
All the material in this publication is copyright
© Pearson Education Ltd 2020

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

Question number	Answer	Notes	Marks
1 (a)	potassium		
(b)			

Question number	Answer	Notes	Marks
2 (a) (b)	fractional distillation aircraft fuel/jet fuel/paraffin or fuel for lamps/ heaters	ACCEPT fractionation/fractionating IGNORE distillation alone ALLOW heating oil ALLOW cooking fuel	1 1
(c) (i)	butane	Spelling must be correct	1
(ii)	$\left(M_{r}=4 \times 12+10 \times 1=58\right.$		1
(d) (i)	$\mathrm{C}_{7} \mathrm{H}_{16}$		1
(ii)	$\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}$	ACCEPT different letters to $\mathrm{n} / \mathrm{uppercase}$	1

Question number	Answer	Notes	Marks
2 (e) (i)	alumina / silica	ACCEPT aluminium oxide / silicon dioxide / $\mathrm{Al}_{2} \mathrm{O}_{3} / \mathrm{SiO}_{2} /$ zeolite(s) / aluminosilicate(s)	1
(ii)	An explanation that links the following two points		2
	M1 greater demand for short chain alkanes (than long chain alkanes)	ALLOW short chain alkanes are more useful (than long chain alkanes)	
		ALLOW short chain alkanes needed for specific uses e.g. petrol	
	M2 more long-chain alkanes than are needed / too great a supply of /surplus of long-chain alkanes OR not enough short chain alkanes to meet demands		
(f)	$\left(\mathrm{C}_{11} \mathrm{H}_{24} \rightarrow \mathrm{C}_{5} \mathrm{H}_{12}\right)+\mathrm{C}_{2} \mathrm{H}_{4}+\mathrm{C}_{4} \mathrm{H}_{8}$	alkenes can be in either order	2
	M1 $\mathrm{C}_{2} \mathrm{H}_{4}$		
	M2 $\mathrm{C}_{4} \mathrm{H}_{8}$	ALLOW 1 mark for $\mathrm{C}_{6} \mathrm{H}_{12} / 2 \mathrm{C}_{3} \mathrm{H}_{6}$ $/ \mathrm{C}_{3} \mathrm{H}_{6}+\mathrm{C}_{3} \mathrm{H}_{6}$	
		ALLOW correct displayed formulae	
			Total 11

Question number	Answer	Notes	Marks
3 (a)	An explanation that links the following two points M1 electrons are delocalised M2 (electrons) can move/can flow/are mobile	IGNORE sea of electrons /free electrons REJECT cations/atoms move for both marks M2 dep on M1 or mention of electrons i.e. ‘electrons move' scores 1 mark	2
(b) (i)	M1 brown/pink/pink-brown solid formed M2 bubbles/fizzing/effervescence copper ion(s)/Cu ${ }^{2+}$ gains electrons An explanation that links the following two points M1 the (blue) colour is caused by copper ions/Cu ${ }^{2+}$ M2 copper ions/Cu ${ }^{2+}$ are being discharged/ removed from the solution	ACCEPT brown/pink coating/deposit on the electrode ALLOW red-brown REJECT orange REJECT precipitate ALLOW 1 mark if both observations correct but at incorrect electrodes IGNORE gas produced /evolved/released IGNORE name of gas ACCEPT oxidation state of copper goes down / goes from +2 to 0 IGNORE references to loss of oxygen ALLOW electrons are gained REJECT copper/Cu gains electrons ACCEPT concentration of copper ions/Cu ${ }^{2+}$ decreases ALLOW copper ions/Cu ${ }^{2+}$ form copper	2

Question number	Answer	Notes	Marks
3 (c)	- calculate the mass of water removed - calculate the amount, in moles, of CuSO_{4} - calculate the amount, in moles, of water - divide amount of $\mathrm{H}_{2} \mathrm{O}$ by amount of CuSO_{4} Example calculation M1 $(12.5-8.0)=4.5(\mathrm{~g})$ $\mathbf{M 2} n\left(\mathrm{CuSO}_{4}\right)=8.0 \div 159.5=0.05(0)(\mathrm{mol})$ M3 $n\left(\mathrm{H}_{2} \mathrm{O}\right)=4.5 \div 18=0.25(\mathrm{~mol})$ M4 $0.25 \div 0.05(0)(=5)$	ACCEPT alternative methods which show that the answer is 5	4
			Total 11

Question number	Answer	Notes	Marks
4 (a)	M1 (from) yellow M2 (to) orange	ACCEPT red ALLOW pink 1 mark for two correct colours in the wrong order	
(b)	A description that makes reference to any four of the following points M1 he should not rinse flask with sodium hydroxide solution or he should rinse flask with water M2 he should use a pipette to measure out the sodium hydroxide solution M3 he should not rinse the burette with water or he should rinse the burette with sulfuric acid M4 he should record the initial burette reading M5 he should place a white tile under the flask M6 he should swirl the flask whilst adding the acid M7 he should add the acid dropwise near the end-point M8 repeat the titration (to obtain an average/ concordant results)	ALLOW white paper ACCEPT he should use a measuring cylinder a	4

Question number	Answer	Notes	Marks
4 (c)	- calculate the amount, in moles, of sodium hydroxide - calculate the amount, in moles, of sulfuric acid - calculate the concentration of sulfuric acid Example calculation M1 $n(\mathrm{NaOH})=0.0250 \times 0.200$ or $0.005(\mathrm{~mol})$ M2 $n\left(\mathrm{H}_{2} \mathrm{SO}_{4}\right)=0.005 \div 2$ or $0.0025(\mathrm{~mol})$ M3 conc $^{\mathrm{n}}=(0.0025 \div 0.0167)=0.150\left(\mathrm{~mol} / \mathrm{dm}^{3}\right)$	answer to M1 $\div 2$ answer to M2 $\div 0.0167$ ALLOW 0.1497 or any number of sig fig except one Correct answer without working scores 3 ACCEPT alternative methods	3
			Total 9

Question number	Answer 5 (a)	B it relights a glowing splint A is incorrect as this is the test for hydrogen C is incorrect as oxygen is not an acidic gas D is incorrect as this is the test for carbon dioxide	Notes
(b)	An explanation that links the following two points M1 provides an alternative pathway OWTTE	1	
M2 with a lower activation energy OWTTE	ACCEPT more collisions with energy greater than the activation energy	ALLOW lowers the energy needed to start the reaction	2

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \& \begin{tabular}{l}
M1 \(300\left({ }^{\circ} \mathrm{C}\right)\) \\
M2 60 to 70 (atm)
\end{tabular} \& \begin{tabular}{l}
ACCEPT any temperature or range 250 to 350 inclusive. \\
ACCEPT any correct alternative unit and quantity \\
ACCEPT any pressure or range 60 to 70 inclusive \\
ACCEPT any correct alternative unit and quantity \\
All bonds including bond between O and H must be shown.
\end{tabular} \& 2

1

\hline | (b) (i) |
| :--- |
| (ii) | \& | $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$ |
| :--- |
| M1 all formulae correct |
| M2 balancing of correct formulae | \& | ALLOW $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}$ for ethanol |
| :--- |
| ACCEPT multiples and fractions |
| IGNORE state symbols even if incorrect |
| M2 dep on M1 |
| ALLOW references to combining with haemoglobin in red blood cells or forming carboxyhaemoglobin | \& 2

\hline
\end{tabular}

Question number	Answer	Notes	Marks
(c)	ethyl ethanoate	ALLOW ethyl acetate	
(d)			

\begin{tabular}{|c|c|c|c|}
\hline Question number \& Answer \& Notes \& Marks \\
\hline \begin{tabular}{l}
\(7 \quad\) (a) (i) \\
(ii)
\end{tabular} \& \begin{tabular}{l}
calcium + water \(\rightarrow\) calcium hydroxide + hydrogen \\
Any two from \\
M1 effervescence/fizzing/bubbles \\
M2 calcium/metal/solid disappears/becomes smaller OWTTE \\
M3 test tube/beaker feels warm/hot
\end{tabular} \& \begin{tabular}{l}
ACCEPT fully correct balanced chemical equation.
\[
\mathrm{Ca}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{H}_{2}
\] \\
IGNORE state symbols even if incorrect \\
IGNORE gas given off \\
ALLOW calcium/metal /solid dissolves \\
ALLOW heat produced /temperature increases
\end{tabular} \& 1

2

\hline (b) (i) \& | A description that makes reference to the following five points |
| :--- |
| M1 dissolve each of the solids in water/make a solution of each of the solids |
| M2 mix/add (the two solutions together) |
| M3 filter (the mixture) |
| M4 wash the precipitate/solid/barium sulfate /salt/residue (with water) |
| M5 suitable method of drying the solid | \& | ALLOW M1 and M2 if just one of the solids is dissolved in water and then the other solid is added to it. |
| :--- |
| M2 dep on M1 or on reference to the solutions being mixed |
| If implication is that filtering is to obtain crystals from the solution no M3 |
| e.g. dry in a (warm) oven/dry between filter papers |
| ALLOW leave to dry |
| REJECT hot oven or direct heating (with Bunsen burner) |
| If evaporation of solution to form crystals do not award M4 but allow M5 for suitable drying method | \& 5

\hline
\end{tabular}

| (ii) | $\mathrm{Ba}^{2+}(\mathrm{aq})+\mathrm{SO}_{4}{ }^{2-}(\mathrm{aq}) \rightarrow \mathrm{BaSO}_{4}(\mathrm{~s})$
 $M 1$ all formulae correct
 $M 2$ state symbols correct | If formulae incorrect or full
 equation given (even if
 incorrect) M2 can still be
 awarded for correct state
 symbols. If NaCl in equation
 must be (aq). | 2 |
| :--- | :--- | :--- | :--- | :--- |

Question number	Answer	Notes	Marks
7 (c) (i) (ii)	C decomposition A is incorrect as it is not an addition reaction B is incorrect as oxygen is not a reactant D is incorrect as nothing is neutralised here - calculate the amount, in moles, of magnesium nitrate - use the equation to find the total amount, in moles, of gas produced - multiply this amount by 24 - answer given to two significant figures Example calculation M1 n (magnesium nitrate $)=7.7 \div 148$ or $0.052(\mathrm{~mol})$ M2 n (gas) $=5 \times 0.052 \div 2$ or $0.13(\mathrm{~mol})$ M3 Total volume of gas $=0.13 \times 24$ or 3.12 M4 3.1(dm^{3})	5 x answer to $\mathbf{M} \mathbf{1} \div 2$ answer to M2 x 24 answer to M3 to 2 sig fig Allow any number of sig fig for M1, M2 and M3 3.1 without working scores 4 3.12 without working scores 3	1 4

Pearson Education Limited. Registered company number 872828
with its registered office at 80 Strand, London, WC2R ORL, United Kingdom

